
Introduction to MPC
Yehuda Lindell

CEO and co-Founder of Unbound Tech
Professor of Computer Science, Bar-Ilan University

2

What is MPC?

Secure Multiparty Computation

• A well researched subfield of cryptography
• Research began in the late 1980s
• Thousands of research papers
• Research was purely theoretical until recently
• MPC is now a very active applied area of research

• The idea – compute on private data without revealing anything

Secure Multiparty Computation
Toy Example

Compute average salary:
A group of cryptographers

want to compute the
average of their salaries,

without revealing anyone’s
salary!

Alice’s salary:
$120K

Bob’s salary: $105K

Eve’s salary: $65K

$8
77

,1
95

$772,195

$942,195
1. Choose large
random number:

$652,195
Add to salary

2. Add received
number to salary

3 Add received
number to salary

4. Subtract random number and
divide by 3:

$96,666

MPC Security Requirements

• Parties with private inputs compute a joint function of their inputs
• Ensuring that nothing but the output is learned (privacy)
• Ensuring that the output is correctly computed (correctness)

• Properties should be guaranteed even in the face of adversarial behavior
• Semi-honest: adversary running the correct software cannot learn anything
• Malicious: adversary running any software cannot learn anything

• Even if they know all the protocols, design, and so on

• The adversary can corrupt parties:
• Two main settings: any number (dishonest majority) or a minority (honest majority)

• Security is mathematically proven

• What would the ideal situation be?
• A trusted and incorruptible third party
• All parties send inputs to trusted party

• On perfectly-secure communication channels
• Trusted party computes and sends output

• Properties
• Privacy: each party learns nothing but their

output
• Correctness: output is correct
• More…

The Ideal/Real Paradigm

6

𝑥 𝑦

𝑓(𝑥, 𝑦) 𝑓(𝑥, 𝑦)

7

The Ideal/Real Paradigm

• The real world
• Parties interact with each other
• There is no trusted party
• Parties output what the protocol tells them to

• Definition: an MPC protocol is secure if it “behaves like” an ideal
world protocol
• Cannot do more than what an attacker can do in the ideal world
• In the ideal world, can choose your input and that’s it

𝑚!

𝑚"

𝑚#

𝑚$

OutputOutput

8

Definitional Advantages

• Very easy to understand – build and justify your application assuming a
trusted party (secure black box)
• Don’t need to be a cryptographer!

• Words of warning
• MPC talks about the process but not the function itself

• Average of salaries between two people reveals everything in the ideal world
• MPC of cryptographic functions is fine by definition, if cryptographic function is secure

• Parties can choose their own inputs – if this is a problem, needs to be worked into
the function definition

9

How Does MPC Work?

10

Secure Computation – A Fun Problem

• Consider the dating problem
• A guy and a girl want to check if they are

both interested in going out
• If they both are, then output is YES
• If at least one is not, then output is NO

• If Alice says YES and Bob says NO, then
the result is NO and Bob doesn’t know if
Alice said YES or not
• Alice doesn’t lose face…

11

The Dating Problem with Cards

• Alice and Bob each get two cards

• If Alice likes Bob: and if not:

• If Bob likes Alice: and if not:

• Each turns their cards over, with an Ace in the middle

Alice’s cards Bob’s cards

12

The Dating Problem with Cards

• If Alice and Bob like each other

• Otherwise,

• Parties turn over middle card and randomly rotate
• If three Aces in a row then YES; else NO

Alice’s cards Bob’s cards

=
Alice’s cards Bob’s cards

Alice’s cards Bob’s cardsAlice’s cards Bob’s cards Alice’s cards Bob’s cards

or or

13

General Secure Computation

• Powerful feasibility theorems for MPC
• Any function can be securely computed!

• How is it possible to securely compute any function?
• Represent the function as a (Boolean or arithmetic) circuit
• Show how to compute any circuit in MPC

• Is this even remotely efficient???

Yao’s Garbled Circuits

𝑢 𝑣

𝑤
𝑢 𝑣 𝑤 = 𝑢 ∧ 𝑣
0 0 0

0 1 0

1 0 0

1 1 1

𝑢 𝑣 𝑤 = 𝑢 ∧ 𝑣
𝑘%& 𝑘'& 𝑘(&

𝑘%& 𝑘'! 𝑘(&

𝑘%! 𝑘'& 𝑘(&

𝑘%! 𝑘'! 𝑘(!

𝐸)!" 𝐸)#" 𝑘(
&

𝐸)!" 𝐸)#$ 𝑘(
&

𝐸)!$ 𝐸)#" 𝑘(
&

𝐸)!$ 𝐸)#$ 𝑘(
!

• Given one key on each input wire, can compute the key on the output
wire, without learning anything about the represented values

• Keys on input wires are called garbled inputs

• Garbling a single Boolean gate
In random

 order

Garbling an Entire Circuit

AND

AND OR

0, 𝑘*& , 1, 𝑘*! 0, 𝑘+& , 1, 𝑘+!

𝑘+!𝑘+&

𝑘,!𝑘,&

𝑘-!𝑘-&

𝑘*!𝑘*&

𝑘.!𝑘.& 𝑘/!𝑘/&𝑘0!𝑘0&

𝐸)%" 𝐸)&" 𝑘*
&

𝐸)%" 𝐸)&$ 𝑘*
&

𝐸)%$ 𝐸)&" 𝑘*
&

𝐸)%$ 𝐸)&$ 𝑘*
!

𝐸)&" 𝐸)'" 𝑘+
&

𝐸)&" 𝐸)'$ 𝑘+
!

𝐸)&$ 𝐸)'" 𝑘+
!

𝐸)&$ 𝐸)'$ 𝑘+
!

𝐸)(" 𝐸))" 𝑘-
&

𝐸)(" 𝐸))$ 𝑘-
&

𝐸)($ 𝐸))" 𝑘-
&

𝐸)($ 𝐸))$ 𝑘-
!

Computing a Garbled Circuit

AND

AND OR

0, 𝑘*& , 1, 𝑘*! 0, 𝑘+& , 1, 𝑘+!

𝐸)%" 𝐸)&" 𝑘*
&

𝐸)%" 𝐸)&$ 𝑘*
&

𝐸)%$ 𝐸)&" 𝑘*
&

𝐸)%$ 𝐸)&$ 𝑘*
!

𝐸)&" 𝐸)'" 𝑘+
&

𝐸)&" 𝐸)'$ 𝑘+
!

𝐸)&$ 𝐸)'" 𝑘+
!

𝐸)&$ 𝐸)'$ 𝑘+
!

𝐸)(" 𝐸))" 𝑘-
&

𝐸)(" 𝐸))$ 𝑘-
&

𝐸)($ 𝐸))" 𝑘-
&

𝐸)($ 𝐸))$ 𝑘-
!Input = 0101 𝑘,!𝑘.& 𝑘/&𝑘0!

• Computing the Garbled Circuit

AND

AND OR

0, 𝑘*& , 1, 𝑘*! 0, 𝑘+& , 1, 𝑘+!

𝐸)%" 𝐸)&" 𝑘*
&

𝐸)%" 𝐸)&$ 𝑘*
&

𝐸)%$ 𝐸)&" 𝑘*
&

𝐸)%$ 𝐸)&$ 𝑘*
!

𝐸)&" 𝐸)'" 𝑘+
&

𝐸)&" 𝐸)'$ 𝑘+
!

𝐸)&$ 𝐸)'" 𝑘+
!

𝐸)&$ 𝐸)'$ 𝑘+
!

𝐸)(" 𝐸))" 𝑘-
&

𝐸)(" 𝐸))$ 𝑘-
&

𝐸)($ 𝐸))" 𝑘-
&

𝐸)($ 𝐸))$ 𝑘-
!Input = 0101 𝑘,!𝑘.& 𝒌𝒄𝟎𝒌𝒃𝟏

𝐸)(" 𝐸))" 𝑘-
&

𝐸)(" 𝐸))$ 𝑘-
&

𝑬𝒌𝒃𝟏 𝑬𝒌𝒄𝟎 𝒌𝒆
𝟎

𝐸)($ 𝐸))$ 𝑘-
!

Computing a Garbled Circuit

AND

AND OR

0, 𝑘*& , 1, 𝑘*! 0, 𝑘+& , 1, 𝑘+!

𝐸)%" 𝐸)&" 𝑘*
&

𝐸)%" 𝐸)&$ 𝑘*
&

𝐸)%$ 𝐸)&" 𝑘*
&

𝐸)%$ 𝐸)&$ 𝑘*
!

𝐸)&" 𝐸)'" 𝑘+
&

𝐸)&" 𝐸)'$ 𝑘+
!

𝐸)&$ 𝐸)'" 𝑘+
!

𝐸)&$ 𝐸)'$ 𝑘+
!

Input = 0101 𝑘,!𝑘.& 𝒌𝒄𝟎𝒌𝒃𝟏

𝐸)(" 𝐸))" 𝑘-
&

𝐸)(" 𝐸))$ 𝑘-
&

𝑬𝒌𝒃𝟏 𝑬𝒌𝒄𝟎 𝒌𝒆
𝟎

𝐸)($ 𝐸))$ 𝑘-
!

Computing a Garbled Circuit

AND

AND OR

0, 𝑘*& , 1, 𝑘*! 0, 𝑘+& , 1, 𝑘+!

𝐸)%" 𝐸)&" 𝑘*
&

𝐸)%" 𝐸)&$ 𝑘*
&

𝐸)%$ 𝐸)&" 𝑘*
&

𝐸)%$ 𝐸)&$ 𝑘*
!

𝐸)&" 𝐸)'" 𝑘+
&

𝐸)&" 𝐸)'$ 𝑘+
!

𝐸)&$ 𝐸)'" 𝑘+
!

𝐸)&$ 𝐸)'$ 𝑘+
!

Input = 0101 𝑘,!𝑘.& 𝒌𝒄𝟎𝒌𝒃𝟏

𝒌𝒆𝟎

𝐸)(" 𝐸))" 𝑘-
&

𝐸)(" 𝐸))$ 𝑘-
&

𝑬𝒌𝒃𝟏 𝑬𝒌𝒄𝟎 𝒌𝒆
𝟎

𝐸)($ 𝐸))$ 𝑘-
!

Computing a Garbled Circuit

AND

AND OR

0, 𝑘*& , 1, 𝑘*! 0, 𝑘+& , 1, 𝑘+!

𝐸)%" 𝐸)&" 𝑘*
&

𝐸)%" 𝐸)&$ 𝑘*
&

𝐸)%$ 𝐸)&" 𝑘*
&

𝐸)%$ 𝐸)&$ 𝑘*
!

𝐸)&" 𝐸)'" 𝑘+
&

𝐸)&" 𝐸)'$ 𝑘+
!

𝐸)&$ 𝐸)'" 𝑘+
!

𝐸)&$ 𝐸)'$ 𝑘+
!

Input = 0101 𝑘,!𝒌𝒂𝟎 𝑘/&𝑘0!

𝒌𝒆𝟎

𝑬𝒌𝒂𝟎 𝑬𝒌𝒆𝟎 𝒌𝒇
𝟎

𝐸)%" 𝐸)&$ 𝑘*
&

𝐸)%$ 𝐸)&" 𝑘*
&

𝐸)%$ 𝐸)&$ 𝑘*
!

𝐸)(" 𝐸))" 𝑘-
&

𝐸)(" 𝐸))$ 𝑘-
&

𝑬𝒌𝒃𝟏 𝑬𝒌𝒄𝟎 𝒌𝒆
𝟎

𝐸)($ 𝐸))$ 𝑘-
!

Computing a Garbled Circuit

AND

AND OR

0, 𝑘*& , 1, 𝑘*! 0, 𝑘+& , 1, 𝑘+!
𝐸)&" 𝐸)'" 𝑘+

&

𝐸)&" 𝐸)'$ 𝑘+
!

𝐸)&$ 𝐸)'" 𝑘+
!

𝐸)&$ 𝐸)'$ 𝑘+
!

Input = 0101 𝑘,!𝒌𝒂𝟎 𝑘/&𝑘0!

𝒌𝒆𝟎

𝑬𝒌𝒂𝟎 𝑬𝒌𝒆𝟎 𝒌𝒇
𝟎

𝐸)%" 𝐸)&$ 𝑘*
&

𝐸)%$ 𝐸)&" 𝑘*
&

𝐸)%$ 𝐸)&$ 𝑘*
!

𝐸)(" 𝐸))" 𝑘-
&

𝐸)(" 𝐸))$ 𝑘-
&

𝑬𝒌𝒃𝟏 𝑬𝒌𝒄𝟎 𝒌𝒆
𝟎

𝐸)($ 𝐸))$ 𝑘-
!

Computing a Garbled Circuit

AND

AND OR

0, 𝑘*& , 1, 𝑘*! 0, 𝑘+& , 1, 𝑘+!
𝐸)&" 𝐸)'" 𝑘+

&

𝐸)&" 𝐸)'$ 𝑘+
!

𝐸)&$ 𝐸)'" 𝑘+
!

𝐸)&$ 𝐸)'$ 𝑘+
!

Input = 0101 𝑘,!𝒌𝒂𝟎 𝑘/&𝑘0!

𝒌𝒆𝟎

𝒌𝒇𝟎

𝑬𝒌𝒂𝟎 𝑬𝒌𝒆𝟎 𝒌𝒇
𝟎

𝐸)%" 𝐸)&$ 𝑘*
&

𝐸)%$ 𝐸)&" 𝑘*
&

𝐸)%$ 𝐸)&$ 𝑘*
!

𝐸)(" 𝐸))" 𝑘-
&

𝐸)(" 𝐸))$ 𝑘-
&

𝑬𝒌𝒃𝟏 𝑬𝒌𝒄𝟎 𝒌𝒆
𝟎

𝐸)($ 𝐸))$ 𝑘-
!

Computing a Garbled Circuit

AND

AND OR

0, 𝑘*& , 1, 𝑘*! 0, 𝑘+& , 1, 𝑘+!
𝐸)&" 𝐸)'" 𝑘+

&

𝐸)&" 𝐸)'$ 𝑘+
!

𝐸)&$ 𝐸)'" 𝑘+
!

𝐸)&$ 𝐸)'$ 𝑘+
!

Input = 0101 𝒌𝒅𝟏𝑘.& 𝑘/&𝑘0!

𝒌𝒆𝟎

𝑘*&

𝐸)&" 𝐸)'" 𝑘+
&

𝑬𝒌𝒆𝟎 𝑬𝒌𝒅𝟏 𝒌𝒈
𝟏

𝐸)&$ 𝐸)'" 𝑘+
!

𝐸)&$ 𝐸)'$ 𝑘+
!

𝑬𝒌𝒂𝟎 𝑬𝒌𝒆𝟎 𝒌𝒇
𝟎

𝐸)%" 𝐸)&$ 𝑘*
&

𝐸)%$ 𝐸)&" 𝑘*
&

𝐸)%$ 𝐸)&$ 𝑘*
!

𝐸)(" 𝐸))" 𝑘-
&

𝐸)(" 𝐸))$ 𝑘-
&

𝑬𝒌𝒃𝟏 𝑬𝒌𝒄𝟎 𝒌𝒆
𝟎

𝐸)($ 𝐸))$ 𝑘-
!

Computing a Garbled Circuit

AND

AND OR

0, 𝑘*& , 1, 𝑘*! 0, 𝑘+& , 1, 𝑘+!

Input = 0101 𝒌𝒅𝟏𝑘.& 𝑘/&𝑘0!

𝒌𝒆𝟎

𝑘*&

𝐸)&" 𝐸)'" 𝑘+
&

𝑬𝒌𝒆𝟎 𝑬𝒌𝒅𝟏 𝒌𝒈
𝟏

𝐸)&$ 𝐸)'" 𝑘+
!

𝐸)&$ 𝐸)'$ 𝑘+
!

𝑬𝒌𝒂𝟎 𝑬𝒌𝒆𝟎 𝒌𝒇
𝟎

𝐸)%" 𝐸)&$ 𝑘*
&

𝐸)%$ 𝐸)&" 𝑘*
&

𝐸)%$ 𝐸)&$ 𝑘*
!

𝐸)(" 𝐸))" 𝑘-
&

𝐸)(" 𝐸))$ 𝑘-
&

𝑬𝒌𝒃𝟏 𝑬𝒌𝒄𝟎 𝒌𝒆
𝟎

𝐸)($ 𝐸))$ 𝑘-
!

Computing a Garbled Circuit

AND

AND OR

0, 𝑘*& , 1, 𝑘*! 0, 𝑘+& , 1, 𝑘+!

Input = 0101 𝒌𝒅𝟏𝑘.& 𝑘/&𝑘0!

𝒌𝒆𝟎

𝑘*&
𝒌𝒈𝟏

𝐸)&" 𝐸)'" 𝑘+
&

𝑬𝒌𝒆𝟎 𝑬𝒌𝒅𝟏 𝒌𝒈
𝟏

𝐸)&$ 𝐸)'" 𝑘+
!

𝐸)&$ 𝐸)'$ 𝑘+
!

𝑬𝒌𝒂𝟎 𝑬𝒌𝒆𝟎 𝒌𝒇
𝟎

𝐸)%" 𝐸)&$ 𝑘*
&

𝐸)%$ 𝐸)&" 𝑘*
&

𝐸)%$ 𝐸)&$ 𝑘*
!

𝐸)(" 𝐸))" 𝑘-
&

𝐸)(" 𝐸))$ 𝑘-
&

𝑬𝒌𝒃𝟏 𝑬𝒌𝒄𝟎 𝒌𝒆
𝟎

𝐸)($ 𝐸))$ 𝑘-
!

Computing a Garbled Circuit

AND

AND OR

0, 𝑘*& , 1, 𝑘*! 0, 𝑘+& , 1, 𝑘+!

Input = 0101 𝑘,!𝑘.& 𝑘/&𝑘0!

𝑘-&

𝒌𝒇𝟎 𝒌𝒈𝟏

𝐸)&" 𝐸)'" 𝑘+
&

𝑬𝒌𝒆𝟎 𝑬𝒌𝒅𝟏 𝒌𝒈
𝟏

𝐸)&$ 𝐸)'" 𝑘+
!

𝐸)&$ 𝐸)'$ 𝑘+
!

𝑬𝒌𝒂𝟎 𝑬𝒌𝒆𝟎 𝒌𝒇
𝟎

𝐸)%" 𝐸)&$ 𝑘*
&

𝐸)%$ 𝐸)&" 𝑘*
&

𝐸)%$ 𝐸)&$ 𝑘*
!

𝐸)(" 𝐸))" 𝑘-
&

𝐸)(" 𝐸))$ 𝑘-
&

𝑬𝒌𝒃𝟏 𝑬𝒌𝒄𝟎 𝒌𝒆
𝟎

𝐸)($ 𝐸))$ 𝑘-
!

Computing a Garbled Circuit

AND

AND OR

𝟎, 𝒌𝒇𝟎 , 1, 𝑘*! 0, 𝑘+& , 𝟏, 𝒌𝒈𝟏

Input = 0101 𝑘,!𝑘.& 𝑘/&𝑘0!

𝑘-&

𝒌𝒇𝟎 𝒌𝒈𝟏

Three-Party Protocol with Garbled Circuits

• Inputs: party 𝑃5 has input 𝑥, and party 𝑃6 has input 𝑦; party 𝑃7 has no input
• Protocol with security against one malicious party

seed for generating GC• Generate GC from seed
• Generate garbled input of 𝑥

to garbled circuit

• Generate GC from seed
• Generate garbled input of
𝑦 to garbled circuitGC + garbled input of 𝑥 GC +

 ga
rb

led
 in

pu
t o

f 𝑦

• Verify that both garbled circuits are same
• Compute GC on keys and get output
• Send output back (authenticated)

𝑥 𝑦

𝑓(𝑥, 𝑦)

There exist protocols for two
parties with security against
one malicious that use garbled
circuits (and also multiparty
with dishonest majority)

29

MPC for Specific Tasks

Threshold Cryptography

• Compute a cryptographic function without any single party holding
the key

• Motivation:
• Make it hard to steal the key
• Provide quorum authorizations (like signees for bank transactions)

Securely Computing the RSA Function

• RSA signing and decryption:
• Private key: 𝑑,𝑁
• Public key: (𝑒, 𝑁)
• Private operation (sign/decrypt): 𝑧 = 𝑦8 mod 𝑁

• RSA key sharing
• Server 𝑆5 has a random 𝑑5
• Server 𝑆6 has 𝑑6 = 𝑑 − 𝑑5mod 𝜙 𝑁
• Note that 𝑑5 + 𝑑6 = 𝑑 mod 𝜙(𝑁)
• Security:

• 𝑑$ reveals nothing about 𝑑 since it’s random
• 𝑑% reveals nothing about 𝑑 since 𝑑$ completely hides 𝑑

Securely Computing the RSA Function

• Recall: server 𝑆! has 𝑑! and server 𝑆" has 𝑑", such that 𝑑! + 𝑑" = 𝑑

• Securely computing the private operation 𝒙 = 𝒚𝒅𝐦𝐨𝐝 𝑵
• Server 𝑆6 computes 𝑧6 = 𝑦8' mod 𝑁 and sends to server 𝑆5
• Server 𝑆5 computes 𝑧5 = 𝑦8(mod 𝑁
• Server 𝑆5 computes 𝑧 = 𝑧5 ⋅ 𝑧6mod 𝑁
• Server 𝑆5 verifies the result by checking that 𝑦 = 𝑧9 mod 𝑁
• Note: 𝑧 = 𝑧5 ⋅ 𝑧6 = 𝑦8(⋅ 𝑦8' = 𝑦8(:8' = 𝑦8 mod 𝑁

• The last equality holds since addition in exponent is mod 𝜙(𝑁)

Two-Party Protocol for RSA Decrypt/Sign

• Inputs: Server 𝑆! has key share 𝑑! and hash of message 𝑦, and server
𝑆" has key share 𝑑"

Hashed message 𝑦

Compute 𝑧! = 𝑦"!
and 𝑧 = 𝑧! ⋅ 𝑧#

𝑑#𝑑! Partial signature 𝑧# = 𝑦""

Hashed message 𝑦
Client

Signature 𝑧

Secret Share Refresh – Proactive Security

• At fixed intervals (e.g., every hour), sharing of secret is refreshed
• For RSA:

• Note that given 𝑑! and 𝑑"$ = 𝑑" − 𝑟, nothing can be learned about 𝑑

Coin tossing to get 𝑟

Compute 𝑑!" = 𝑑! + 𝑟

𝑑)𝑑*

Compute 𝑑#" = 𝑑# − 𝑟

𝑑*+ 𝑑)+

Other Threshold Cryptography

• As with RSA, it is possible to efficiently compute ECDH, ECDSA, etc.
• They all have (mostly) nice algebraic structure

• What about AES, HMAC, and so on?
• As above, convert the function description to a Boolean circuit (AND/XOR gates)
• Use garbled circuits, or another method

• Efficiency
• AES circuit has about 31,000 gates: 6400 AND and 25000 XOR (but XOR is free)
• It takes about ½ ms to garble and evaluate an AES circuit
• We do about 500 AES-256-GCM operations on 32-byte input (key wrap) per second

• 4-core machine, 10Gbps network

36

Private Set Intersection

• The problem:
• Input: Alice has a set 𝐴, Bob has a set 𝐵
• Output: the set 𝐴 ∩ 𝐵

• This problem has many solutions; we will see a conceptually simple
one here (for semi-honest adversaries)
• Tool – oblivious pseudorandom function evaluation
• Input: Alice has a key 𝐾, Bob has an input 𝑏
• Output: Alice learns nothing, Bob learns 𝐹;(𝑏)
• Concretely, this could be 𝐴𝐸𝑆;(𝑏) or a PRF based on elliptic curves

37

Protocol for Private Set Intersection

𝐾

𝑥!, … , 𝑥$

Choose random 𝐾

Input: 𝐴 = 𝑎!, … , 𝑎$ Input: 𝐵 = 𝑏!, … , 𝑏%

Oblivious AES
Evaluation

𝑏&

𝑦& = 𝐴𝐸𝑆'(𝑏&)

Locally compute all
𝑥& = 𝐴𝐸𝑆'(𝑎&)

For every 𝑖, if 𝑦& = 𝑥(for some 𝑗,
add 𝑏& to the output set 𝐶𝐶

Output 𝐶 Output 𝐶

38

Use Cases in Practice

39

Advertising Conversion – Google

• The problem:
• How can we determine the effectiveness of advertisements for BMWs shown

on someone’s cellphone?

• The solution:
• Compute how many people were shown the ad on their cellphone
• Compute how many people who were shown the ad that bought a BMW
• (Normalize by expected percentage purchase if not shown the ad)

• Privacy concern: this requires Google and BMW sharing their lists
• Solution: use private set intersection
• In fact, it suffices to compute the cardinality (or the sum of amount spent)

40

Boston Wage Gap Study

41

Boston Wage Gap Study

Privacy-Preserving Analytics/Statistics

42

Privacy-Preserving Analytics/Statistics

43

44

MPC for Cryptographic Key Protection

• Classical MPC use cases consider different parties collaborating
• Unbound considers where it all belongs to you, but you don’t trust your network

Each private key is split into
random shares stored on

separate locations and
continually refreshed

Key shares are never united,
from generation through

usage

Key material never exists in
its entirety at any point of
its lifecycle

Deploying an MPC-Based Virtual HSM

AWS

On-premise
data center

Application Server

Azure

𝑬𝑷𝟐 𝑷𝟐

𝑬𝑷𝟏

𝑬𝑷𝟑𝑷𝟏

𝑷𝟑

Application Server

Application Server

From Key Theft to Key Misuse

• Consider a code signing application
• A single malicious signing is a complete failure
• Protection from key theft is not enough

• Using MPC can define flexible quorums
based on multiple sets and arbitrary
thresholds
• 2 out of the 3 parties at R&D, AND
• 1 out of the 2 parties at legal

• Can set quorum sizes depending on need
• All parties participate and so approval is

cryptographically enforced

Sign crypto transactionCode Signing

Two-Factor Authentication with MPC

• Mobiles are powerful computing devices, but extremely vulnerable
• Virtual smartcard / OTP token on mobile
• Mobile and server hold key shares and compute via MPC

• Key never present on mobile at any time
• Refresh key sharing at every single operation

• Strong anti-cloning and detection
• All operations are audited at the server as well as mobile

• Full visibility into operations
• Easy to use – mobile is always with you

• This is a big security advantage
• Easy deployment and management

48

Summary

• MPC is a mature technology and ready for deployment

• MPC still requires high expertise to deploy
• What problems can be solved efficiently?
• Tailoring protocols to specific needs
• Subtleties in published protocols (papers almost never specific basic checks)

• MPC is being used in production, and its use and interest are quickly
growing

49

